Useful SD references (by author’s name)

Useful SD references (by date)

1.
López‐Farrán Z, Guillaumot C, Vargas‐Chacoff L, Paschke K, Dulière V, Danis B, et al. Is the southern crab Halicarcinus planatus (Fabricius, 1775) the next invader of Antarctica? Global Change Biology [Internet]. 2021 May 8 [cited 2021 May 18];gcb.15674. Available from: https://onlinelibrary.wiley.com/doi/10.1111/gcb.15674
1.
Verdura J, Santamaría J, Ballesteros E, Smale DA, Cefalì ME, Golo R, et al. Local‐scale climatic refugia offer sanctuary for a habitat‐forming species during a marine heatwave. Van Alstyne K, editor. J Ecol [Internet]. 2021 Feb 9 [cited 2021 Feb 21];1365-2745.13599. Available from: https://onlinelibrary.wiley.com/doi/10.1111/1365-2745.13599
1.
Gómez‐Gras D, Linares C, Dornelas M, Madin JS, Brambilla V, Ledoux J, et al. Climate change transforms the functional identity of Mediterranean coralligenous assemblages. Wootton T, editor. Ecology Letters [Internet]. 2021 [cited 2021 May 11];24(5):1038–51. Available from: https://onlinelibrary.wiley.com/doi/10.1111/ele.13718
1.
Krasnobaev A, ten Dam G, Boerrigter-Eenling R, Peng F, van Leeuwen SPJ, Morley SA, et al. Legacy and Emerging Persistent Organic Pollutants in Antarctic Benthic Invertebrates near Rothera Point, Western Antarctic Peninsula. Environmental Science & Technology [Internet]. 2020 Feb 14 [cited 2020 Feb 28]; Available from: https://pubs.acs.org/doi/abs/10.1021/acs.est.9b06622
1.
Temmink RJM, Christianen MJA, Fivash GS, Angelini C, Boström C, Didderen K, et al. Mimicry of emergent traits amplifies coastal restoration success. Nature Communications [Internet]. 2020 [cited 2020 Oct 20];11(1). Available from: http://www.nature.com/articles/s41467-020-17438-4
1.
Wolfe K, Mumby PJ. RUbble Biodiversity Samplers: 3D‐printed coral models to standardize biodiversity censuses. Ellison A, editor. Methods in Ecology and Evolution [Internet]. 2020 [cited 2020 Dec 2];11(11):1395–400. Available from: https://onlinelibrary.wiley.com/doi/10.1111/2041-210X.13462
1.
Cattano C, Agostini S, Harvey BP, Wada S, Quattrocchi F, Turco G, et al. Changes in fish communities due to benthic habitat shifts under ocean acidification conditions. Science of The Total Environment [Internet]. 2020 [cited 2021 May 10];725:138501. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0048969720320143
1.
Malik A, Einbinder S, Martinez S, Tchernov D, Haviv S, Almuly R, et al. Molecular and skeletal fingerprints of scleractinian coral biomineralization: From the sea surface to mesophotic depths. Acta Biomaterialia [Internet]. 2020 [cited 2020 Feb 23]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S1742706120300118
1.
Koerich G, Assis J, Costa GB, Sissini MN, Serrão EA, Rörig LR, et al. How experimental physiology and ecological niche modelling can inform the management of marine bioinvasions? Science of The Total Environment [Internet]. 2020 [cited 2021 May 10];700:134692. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0048969719346832
1.
Webb AL, Hughes KA, Grand MM, Lohan MC, Peck LS. Sources of elevated heavy metal concentrations in sediments and benthic marine invertebrates of the western Antarctic Peninsula. Science of The Total Environment [Internet]. 2020 [cited 2020 Feb 28];698:134268. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0048969719342512
1.
Leppänen JJ, Leinikki J, Väisänen A. NiSO4 spill inflicts varying mortality between four freshwater mussel species (including protected Unio crassus Philipsson, 1788) in a western Finnish river. Environmental Pollution [Internet]. 2020 [cited 2020 Feb 18];256:113402. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0269749119346330
1.
Spicer JI, Morley SA. Will giant polar amphipods be first to fare badly in an oxygen-poor ocean? Testing hypotheses linking oxygen to body size. Philosophical Transactions of the Royal Society B: Biological Sciences [Internet]. 2019 Aug 5 [cited 2020 Feb 28];374(1778):20190034. Available from: https://royalsocietypublishing.org/doi/10.1098/rstb.2019.0034
1.
Cross EL, Harper EM, Peck LS. Thicker Shells Compensate Extensive Dissolution in Brachiopods under Future Ocean Acidification. Environmental Science & Technology [Internet]. 2019 May 7 [cited 2020 Feb 28];53(9):5016–26. Available from: https://pubs.acs.org/doi/10.1021/acs.est.9b00714
1.
de los Santos CB, Krause-Jensen D, Alcoverro T, Marbà N, Duarte CM, van Katwijk MM, et al. Recent trend reversal for declining European seagrass meadows. Nature Communications [Internet]. 2019 [cited 2020 May 11];10(1). Available from: http://www.nature.com/articles/s41467-019-11340-4
1.
Bakker DM, van Duyl FC, Perry CT, Meesters EH. Extreme spatial heterogeneity in carbonate accretion potential on a Caribbean fringing reef linked to local human disturbance gradients. Global Change Biology [Internet]. 2019 [cited 2020 May 8];25(12):4092–104. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14800
1.
Clark MS, Villota Nieva L, Hoffman JI, Davies AJ, Trivedi UH, Turner F, et al. Lack of long-term acclimation in Antarctic encrusting species suggests vulnerability to warming. Nature Communications [Internet]. 2019 [cited 2020 Feb 28];10(1). Available from: http://www.nature.com/articles/s41467-019-11348-w
1.
Morley SA, Peck LS, Sunday JM, Heiser S, Bates AE. Physiological acclimation and persistence of ectothermic species under extreme heat events. Algar A, editor. Global Ecology and Biogeography [Internet]. 2019 [cited 2020 Feb 28];28(7):1018–37. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/geb.12911
1.
Gustafsson C, Norkko A. Quantifying the importance of functional traits for primary production in aquatic plant communities. Austin A, editor. J Ecol [Internet]. 2019 [cited 2020 Feb 24];107(1):154–66. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2745.13011
1.
Pessarrodona A, Foggo A, Smale DA. Can ecosystem functioning be maintained despite climate‐driven shifts in species composition? Insights from novel marine forests. Nilsson C, editor. Journal of Ecology [Internet]. 2019 [cited 2020 Feb 17];107(1):91–104. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2745.13053
1.
Montefalcone M, Morri C, Bianchi CN. Long-term change in bioconstruction potential of Maldivian coral reefs following extreme climate anomalies. Global Change Biology [Internet]. 2018 [cited 2020 May 11];24(12):5629–41. Available from: http://doi.wiley.com/10.1111/gcb.14439
1.
Brener-Raffalli K, Clerissi C, Vidal-Dupiol J, Adjeroud M, Bonhomme F, Pratlong M, et al. Thermal regime and host clade, rather than geography, drive Symbiodinium and bacterial assemblages in the scleractinian coral Pocillopora damicornis sensu lato. Microbiome [Internet]. 2018 [cited 2020 Feb 18];6(1). Available from: https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-018-0423-6
1.
Zwerschke N, Rein H, Harrod C, Reddin C, Emmerson MC, Roberts D, et al. Competition between co‐occurring invasive and native consumers switches between habitats. Higham T, editor. Functional Ecology [Internet]. 2018 [cited 2020 Feb 17];32(12):2717–29. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2435.13211
1.
Pessarrodona A, Moore PJ, Sayer MDJ, Smale DA. Carbon assimilation and transfer through kelp forests in the NE Atlantic is diminished under a warmer ocean climate. Global Change Biology [Internet]. 2018 [cited 2018 Nov 26];24(9):4386–98. Available from: http://doi.wiley.com/10.1111/gcb.14303
1.
Chenuil A, Saucède T, Hemery LG, Eléaume M, Féral J-P, Améziane N, et al. Understanding processes at the origin of species flocks with a focus on the marine Antarctic fauna: Understanding the origins of species flocks. Biological Reviews [Internet]. 2018 [cited 2020 Feb 17];93(1):481–504. Available from: http://doi.wiley.com/10.1111/brv.12354
1.
Brown NEM, Milazzo M, Rastrick SPS, Hall-Spencer JM, Therriault TW, Harley CDG. Natural acidification changes the timing and rate of succession, alters community structure, and increases homogeneity in marine biofouling communities. Global Change Biology [Internet]. 2018 [cited 2020 Feb 17];24(1):e112–27. Available from: http://doi.wiley.com/10.1111/gcb.13856
1.
Burgos E, Montefalcone M, Ferrari M, Paoli C, Vassallo P, Morri C, et al. Ecosystem functions and economic wealth: Trajectories of change in seagrass meadows. Journal of Cleaner Production [Internet]. 2017 [cited 2020 May 11];168:1108–19. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0959652617320358
1.
Cahill AE, De Jode A, Dubois S, Bouzaza Z, Aurelle D, Boissin E, et al. A multispecies approach reveals hot spots and cold spots of diversity and connectivity in invertebrate species with contrasting dispersal modes. Molecular Ecology [Internet]. 2017 [cited 2020 Feb 18];26(23):6563–77. Available from: http://doi.wiley.com/10.1111/mec.14389
1.
Robuchon M, Valero M, Thiébaut E, Le Gall L. Multi-scale drivers of community diversity and composition across tidal heights: an example on temperate seaweed communities. Randall Hughes A, editor. Journal of Ecology [Internet]. 2017 [cited 2020 Mar 17];105(6):1791–805. Available from: http://doi.wiley.com/10.1111/1365-2745.12781
1.
Ashton GV, Morley SA, Barnes DKA, Clark MS, Peck LS. Warming by 1°C Drives Species and Assemblage Level Responses in Antarctica’s Marine Shallows. Current Biology [Internet]. 2017 [cited 2018 Nov 26];27(17):2698-2705.e3. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0960982217309521
1.
Weber AA-T, Abi-Rached L, Galtier N, Bernard A, Montoya-Burgos JI, Chenuil A. Positive selection on sperm ion channels in a brooding brittle star: consequence of life-history traits evolution. Molecular Ecology [Internet]. 2017 [cited 2020 Feb 28];26(14):3744–59. Available from: http://doi.wiley.com/10.1111/mec.14024
1.
Sunday JM, Fabricius KE, Kroeker KJ, Anderson KM, Brown NE, Barry JP, et al. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nature Climate Change [Internet]. 2017 [cited 2020 Feb 17];7(1):81–5. Available from: http://www.nature.com/articles/nclimate3161
1.
Arivalagan J, Yarra T, Marie B, Sleight VA, Duvernois-Berthet E, Clark MS, et al. Insights from the Shell Proteome: Biomineralization to Adaptation. Molecular Biology and Evolution [Internet]. 2017 [cited 2018 Nov 26];34(1):66–77. Available from: https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msw219
1.
Clark MS, Sommer U, Sihra JK, Thorne MAS, Morley SA, King M, et al. Biodiversity in marine invertebrate responses to acute warming revealed by a comparative multi-omics approach. Global Change Biology [Internet]. 2017 [cited 2018 Nov 26];23(1):318–30. Available from: http://doi.wiley.com/10.1111/gcb.13357
1.
Smith JN, De’ath G, Richter C, Cornils A, Hall-Spencer JM, Fabricius KE. Ocean acidification reduces demersal zooplankton that reside in tropical coral reefs. Nature Climate Change [Internet]. 2016 [cited 2020 Feb 17];6(12):1124–9. Available from: http://www.nature.com/articles/nclimate3122
1.
Harper EM, Peck LS. Latitudinal and depth gradients in marine predation pressure: Gradients in marine predation pressure. Global Ecology and Biogeography [Internet]. 2016 [cited 2020 Feb 18];25(6):670–8. Available from: http://doi.wiley.com/10.1111/geb.12444
1.
Boissin E, Micu D, Janczyszyn-Le Goff M, Neglia V, Bat L, Todorova V, et al. Contemporary genetic structure and postglacial demographic history of the black scorpionfish, Scorpaena porcus, in the Mediterranean and the Black Seas. Molecular Ecology [Internet]. 2016 [cited 2020 Feb 18];25(10):2195–209. Available from: http://doi.wiley.com/10.1111/mec.13616
1.
Barnes DKA, Ireland L, Hogg OT, Morley S, Enderlein P, Sands CJ. Why is the South Orkney Island shelf (the world’s first high seas marine protected area) a carbon immobilization hotspot? Global Change Biology [Internet]. 2016 [cited 2018 Nov 26];22(3):1110–20. Available from: http://doi.wiley.com/10.1111/gcb.13157
1.
Ferrario F, Iveša L, Jaklin A, Perkol-Finkel S, Airoldi L. The overlooked role of biotic factors in controlling the ecological performance of artificial marine habitats. Siqueira T, editor. Journal of Applied Ecology [Internet]. 2016 [cited 2020 Feb 18];53(1):16–24. Available from: http://doi.wiley.com/10.1111/1365-2664.12533
1.
Lavrov DV, Adamski M, Chevaldonné P, Adamska M. Extensive Mitochondrial mRNA Editing and Unusual Mitochondrial Genome Organization in Calcaronean Sponges. Current Biology [Internet]. 2016 [cited 2020 Feb 18];26(1):86–92. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0960982215014372
1.
Peck LS. A Cold Limit to Adaptation in the Sea. Trends in Ecology & Evolution [Internet]. 2016 [cited 2018 Nov 26];31(1):13–26. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169534715002505
1.
Ruppé L, Clément G, Herrel A, Ballesta L, Décamps T, Kéver L, et al. Environmental constraints drive the partitioning of the soundscape in fishes. Proceedings of the National Academy of Sciences [Internet]. 2015 May 12 [cited 2015 Dec 12];112(19):6092–7. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1424667112
1.
Garilli V, Rodolfo-Metalpa R, Scuderi D, Brusca L, Parrinello D, Rastrick SPS, et al. Physiological advantages of dwarfing in surviving extinctions in high-CO2 oceans. Nature Climate Change [Internet]. 2015 Apr 20 [cited 2015 Dec 12];5(7):678–82. Available from: http://www.nature.com/doifinder/10.1038/nclimate2616
1.
Smith O, Momber G, Bates R, Garwood P, Fitch S, Pallen M, et al. Sedimentary DNA from a submerged site reveals wheat in the British Isles 8000 years ago. Science [Internet]. 2015 Feb 27 [cited 2020 Feb 28];347(6225):998–1001. Available from: https://www.sciencemag.org/lookup/doi/10.1126/science.1261278
1.
Weber AA-T, Mérigot B, Valière S, Chenuil A. Influence of the larval phase on connectivity: strong differences in the genetic structure of brooders and broadcasters in the Ophioderma longicauda species complex. Molecular Ecology [Internet]. 2015 [cited 2020 Feb 28];24(24):6080–94. Available from: http://doi.wiley.com/10.1111/mec.13456
1.
Lucey NM, Lombardi C, DeMarchi L, Schulze A, Gambi MC, Calosi P. To brood or not to brood: Are marine invertebrates that protect their offspring more resilient to ocean acidification? Scientific Reports [Internet]. 2015 [cited 2020 Feb 18];5(1). Available from: http://www.nature.com/articles/srep12009
1.
Berge J, Daase M, Renaud PE, Ambrose WG, Darnis G, Last KS, et al. Unexpected Levels of Biological Activity during the Polar Night Offer New Perspectives on a Warming Arctic. Current Biology [Internet]. 2015 [cited 2020 Feb 18];25(19):2555–61. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0960982215009951
1.
Pratlong M, Haguenauer A, Chabrol O, Klopp C, Pontarotti P, Aurelle D. The red coral (Corallium rubrum) transcriptome: a new resource for population genetics and local adaptation studies. Molecular Ecology Resources [Internet]. 2015 [cited 2020 Feb 18];15(5):1205–15. Available from: http://doi.wiley.com/10.1111/1755-0998.12383
1.
Brocke HJ, Wenzhoefer F, de Beer D, Mueller B, van Duyl FC, Nugues MM. High dissolved organic carbon release by benthic cyanobacterial mats in a Caribbean reef ecosystem. Scientific Reports [Internet]. 2015 [cited 2020 May 8];5(1). Available from: http://www.nature.com/articles/srep08852
1.
Cachet N, Genta-Jouve G, Ivanisevic J, Chevaldonné P, Sinniger F, Culioli G, et al. Metabolomic profiling reveals deep chemical divergence between two morphotypes of the zoanthid Parazoanthus axinellae. Scientific Reports [Internet]. 2015 [cited 2020 Feb 18];5(1). Available from: http://www.nature.com/articles/srep08282
1.
Descombes P, Wisz MS, Leprieur F, Parravicini V, Heine C, Olsen SM, et al. Forecasted coral reef decline in marine biodiversity hotspots under climate change. Global Change Biology [Internet]. 2015 [cited 2015 Dec 12];21(7):2479–87. Available from: http://doi.wiley.com/10.1111/gcb.12868