Useful SD references (by author’s name)

Useful SD references (by date)

1.
Cecchetto M, Dettai A, Gallut C, Obst M, Kuklinski P, Balazy P, et al. Seasonality of primary production explains the richness of pioneering benthic communities. Nat Commun [Internet]. 2024 Sep 27 [cited 2024 Sep 28];15(1):8340. Available from: https://www.nature.com/articles/s41467-024-52673-z
1.
Attard KM, Lyssenko A, Rodil IF. High metabolism and periodic hypoxia associated with drifting macrophyte detritus in the shallow subtidal Baltic Sea. Biogeosciences [Internet]. 2023 May 4 [cited 2024 Sep 29];20(9):1713–24. Available from: https://bg.copernicus.org/articles/20/1713/2023/
1.
Edgar GJ, Stuart-Smith RD, Heather FJ, Barrett NS, Turak E, Sweatman H, et al. Continent-wide declines in shallow reef life over a decade of ocean warming. Nature [Internet]. 2023 Mar 22 [cited 2023 Mar 23]; Available from: https://www.nature.com/articles/s41586-023-05833-y
1.
Roth F, Broman E, Sun X, Bonaglia S, Nascimento F, Prytherch J, et al. Methane emissions offset atmospheric carbon dioxide uptake in coastal macroalgae, mixed vegetation and sediment ecosystems. Nat Commun [Internet]. 2023 Jan 3 [cited 2024 Sep 29];14(1):42. Available from: https://www.nature.com/articles/s41467-022-35673-9
1.
Soares Gonçalves Serafim T, Gomes De Almeida M, Thouzeau G, Michaud E, Niggemann J, Dittmar T, et al. Land-use changes in Amazon and Atlantic rainforests modify organic matter and black carbon compositions transported from land to the coastal ocean. Science of The Total Environment [Internet]. 2023 [cited 2024 Oct 8];878:162917. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0048969723015334
1.
Muff M, Jaquier M, Marques V, Ballesta L, Deter J, Bockel T, et al. Environmental DNA highlights fish biodiversity in mesophotic ecosystems. Environmental DNA [Internet]. 2022 Sep 23 [cited 2022 Sep 26];edn3.358. Available from: https://onlinelibrary.wiley.com/doi/10.1002/edn3.358
1.
Juhel J, Marques V, Utama RS, Vimono IB, Sugeha HY, Kadarusman K, et al. Estimating the extended and hidden species diversity from environmental DNA in hyper‐diverse regions. Ecography [Internet]. 2022 Jul 20 [cited 2022 Jul 26]; Available from: https://onlinelibrary.wiley.com/doi/10.1111/ecog.06299
1.
Tanvet C, Benzoni F, Peignon C, Thouzeau G, Rodolfo-Metalpa R. High Coral Recruitment Despite Coralline Algal Loss Under Extreme Environmental Conditions. Front Mar Sci [Internet]. 2022 Jun 16 [cited 2024 Oct 8];9:837877. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2022.837877/full
1.
Mathon L, Marques V, Mouillot D, Albouy C, Andrello M, Baletaud F, et al. Cross-ocean patterns and processes in fish biodiversity on coral reefs through the lens of eDNA metabarcoding. Proc R Soc B [Internet]. 2022 Apr 27 [cited 2022 Aug 22];289(1973):20220162. Available from: https://royalsocietypublishing.org/doi/10.1098/rspb.2022.0162
1.
Garrabou J, Gómez‐Gras D, Medrano A, Cerrano C, Ponti M, Schlegel R, et al. Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea. Global Change Biology [Internet]. 2022 [cited 2024 Sep 30];28(19):5708–25. Available from: https://onlinelibrary.wiley.com/doi/10.1111/gcb.16301
1.
Macé B, Hocdé R, Marques V, Guerin P, Valentini A, Arnal V, et al. Evaluating bioinformatics pipelines for population‐level inference using environmental DNA. Environmental DNA [Internet]. 2022 [cited 2022 Aug 22];4(3):674–86. Available from: https://onlinelibrary.wiley.com/doi/10.1002/edn3.269
1.
Marques V, Castagné P, Polanco A, Borrero‐Pérez GH, Hocdé R, Guérin P, et al. Use of environmental DNA in assessment of fish functional and phylogenetic diversity. Conservation Biology [Internet]. 2021 Sep 16 [cited 2021 Nov 22];cobi.13802. Available from: https://onlinelibrary.wiley.com/doi/10.1111/cobi.13802
1.
Turicchia E, Ponti M, Rossi G, Milanese M, Di Camillo CG, Cerrano C. The Reef Check Mediterranean Underwater Coastal Environment Monitoring Protocol. Front Mar Sci [Internet]. 2021 Aug 16 [cited 2024 Sep 30];8:620368. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2021.620368/full
1.
López‐Farrán Z, Guillaumot C, Vargas‐Chacoff L, Paschke K, Dulière V, Danis B, et al. Is the southern crab Halicarcinus planatus (Fabricius, 1775) the next invader of Antarctica? Global Change Biology [Internet]. 2021 May 8 [cited 2021 May 18];gcb.15674. Available from: https://onlinelibrary.wiley.com/doi/10.1111/gcb.15674
1.
Rossi P, Ponti M, Righi S, Castagnetti C, Simonini R, Mancini F, et al. Needs and Gaps in Optical Underwater Technologies and Methods for the Investigation of Marine Animal Forest 3D-Structural Complexity. Front Mar Sci [Internet]. 2021 Mar 5 [cited 2024 Sep 30];8:591292. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2021.591292/full
1.
Verdura J, Santamaría J, Ballesteros E, Smale DA, Cefalì ME, Golo R, et al. Local‐scale climatic refugia offer sanctuary for a habitat‐forming species during a marine heatwave. Van Alstyne K, editor. J Ecol [Internet]. 2021 Feb 9 [cited 2021 Feb 21];1365-2745.13599. Available from: https://onlinelibrary.wiley.com/doi/10.1111/1365-2745.13599
1.
Gómez‐Gras D, Linares C, Dornelas M, Madin JS, Brambilla V, Ledoux J, et al. Climate change transforms the functional identity of Mediterranean coralligenous assemblages. Wootton T, editor. Ecology Letters [Internet]. 2021 [cited 2021 May 11];24(5):1038–51. Available from: https://onlinelibrary.wiley.com/doi/10.1111/ele.13718
1.
Turicchia E, Cerrano C, Ghetta M, Abbiati M, Ponti M. MedSens index: The bridge between marine citizen science and coastal management. Ecological Indicators [Internet]. 2021 [cited 2024 Sep 30];122:107296. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1470160X20312383
1.
Polanco Fernández A, Marques V, Fopp F, Juhel J, Borrero‐Pérez GH, Cheutin M, et al. Comparing environmental DNA metabarcoding and underwater visual census to monitor tropical reef fishes. Environmental DNA [Internet]. 2020 Oct 2 [cited 2020 Oct 2];edn3.140. Available from: https://onlinelibrary.wiley.com/doi/10.1002/edn3.140
1.
Juhel JB, Utama RS, Marques V, Vimono IB, Sugeha HY, Kadarusman, et al. Accumulation curves of environmental DNA sequences predict coastal fish diversity in the coral triangle. Proc R Soc B [Internet]. 2020 Jul 8 [cited 2020 Jul 15];287(1930):20200248. Available from: https://royalsocietypublishing.org/doi/10.1098/rspb.2020.0248
1.
Krasnobaev A, ten Dam G, Boerrigter-Eenling R, Peng F, van Leeuwen SPJ, Morley SA, et al. Legacy and Emerging Persistent Organic Pollutants in Antarctic Benthic Invertebrates near Rothera Point, Western Antarctic Peninsula. Environmental Science & Technology [Internet]. 2020 Feb 14 [cited 2020 Feb 28]; Available from: https://pubs.acs.org/doi/abs/10.1021/acs.est.9b06622
1.
Delrieu‐Trottin E, Durand J, Limmon G, Sukmono T, Kadarusman, Sugeha HY, et al. Biodiversity inventory of the grey mullets (Actinopterygii: Mugilidae) of the Indo‐Australian Archipelago through the iterative use of DNA‐based species delimitation and specimen assignment methods. Evol Appl [Internet]. 2020 Jan 27 [cited 2020 Feb 5];eva.12926. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/eva.12926
1.
Temmink RJM, Christianen MJA, Fivash GS, Angelini C, Boström C, Didderen K, et al. Mimicry of emergent traits amplifies coastal restoration success. Nature Communications [Internet]. 2020 [cited 2020 Oct 20];11(1). Available from: http://www.nature.com/articles/s41467-020-17438-4
1.
Wolfe K, Mumby PJ. RUbble Biodiversity Samplers: 3D‐printed coral models to standardize biodiversity censuses. Ellison A, editor. Methods in Ecology and Evolution [Internet]. 2020 [cited 2020 Dec 2];11(11):1395–400. Available from: https://onlinelibrary.wiley.com/doi/10.1111/2041-210X.13462
1.
Cattano C, Agostini S, Harvey BP, Wada S, Quattrocchi F, Turco G, et al. Changes in fish communities due to benthic habitat shifts under ocean acidification conditions. Science of The Total Environment [Internet]. 2020 [cited 2021 May 10];725:138501. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0048969720320143
1.
Malik A, Einbinder S, Martinez S, Tchernov D, Haviv S, Almuly R, et al. Molecular and skeletal fingerprints of scleractinian coral biomineralization: From the sea surface to mesophotic depths. Acta Biomaterialia [Internet]. 2020 [cited 2020 Feb 23]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S1742706120300118
1.
Koerich G, Assis J, Costa GB, Sissini MN, Serrão EA, Rörig LR, et al. How experimental physiology and ecological niche modelling can inform the management of marine bioinvasions? Science of The Total Environment [Internet]. 2020 [cited 2021 May 10];700:134692. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0048969719346832
1.
Webb AL, Hughes KA, Grand MM, Lohan MC, Peck LS. Sources of elevated heavy metal concentrations in sediments and benthic marine invertebrates of the western Antarctic Peninsula. Science of The Total Environment [Internet]. 2020 [cited 2020 Feb 28];698:134268. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0048969719342512
1.
Leppänen JJ, Leinikki J, Väisänen A. NiSO4 spill inflicts varying mortality between four freshwater mussel species (including protected Unio crassus Philipsson, 1788) in a western Finnish river. Environmental Pollution [Internet]. 2020 [cited 2020 Feb 18];256:113402. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0269749119346330
1.
Spicer JI, Morley SA. Will giant polar amphipods be first to fare badly in an oxygen-poor ocean? Testing hypotheses linking oxygen to body size. Philosophical Transactions of the Royal Society B: Biological Sciences [Internet]. 2019 Aug 5 [cited 2020 Feb 28];374(1778):20190034. Available from: https://royalsocietypublishing.org/doi/10.1098/rstb.2019.0034
1.
Cross EL, Harper EM, Peck LS. Thicker Shells Compensate Extensive Dissolution in Brachiopods under Future Ocean Acidification. Environmental Science & Technology [Internet]. 2019 May 7 [cited 2020 Feb 28];53(9):5016–26. Available from: https://pubs.acs.org/doi/10.1021/acs.est.9b00714
1.
de los Santos CB, Krause-Jensen D, Alcoverro T, Marbà N, Duarte CM, van Katwijk MM, et al. Recent trend reversal for declining European seagrass meadows. Nature Communications [Internet]. 2019 [cited 2020 May 11];10(1). Available from: http://www.nature.com/articles/s41467-019-11340-4
1.
Bakker DM, van Duyl FC, Perry CT, Meesters EH. Extreme spatial heterogeneity in carbonate accretion potential on a Caribbean fringing reef linked to local human disturbance gradients. Global Change Biology [Internet]. 2019 [cited 2020 May 8];25(12):4092–104. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14800
1.
Clark MS, Villota Nieva L, Hoffman JI, Davies AJ, Trivedi UH, Turner F, et al. Lack of long-term acclimation in Antarctic encrusting species suggests vulnerability to warming. Nature Communications [Internet]. 2019 [cited 2020 Feb 28];10(1). Available from: http://www.nature.com/articles/s41467-019-11348-w
1.
Morley SA, Peck LS, Sunday JM, Heiser S, Bates AE. Physiological acclimation and persistence of ectothermic species under extreme heat events. Algar A, editor. Global Ecology and Biogeography [Internet]. 2019 [cited 2020 Feb 28];28(7):1018–37. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/geb.12911
1.
Gustafsson C, Norkko A. Quantifying the importance of functional traits for primary production in aquatic plant communities. Austin A, editor. J Ecol [Internet]. 2019 [cited 2020 Feb 24];107(1):154–66. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2745.13011
1.
Pessarrodona A, Foggo A, Smale DA. Can ecosystem functioning be maintained despite climate‐driven shifts in species composition? Insights from novel marine forests. Nilsson C, editor. Journal of Ecology [Internet]. 2019 [cited 2020 Feb 17];107(1):91–104. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2745.13053
1.
Montefalcone M, Morri C, Bianchi CN. Long-term change in bioconstruction potential of Maldivian coral reefs following extreme climate anomalies. Global Change Biology [Internet]. 2018 [cited 2020 May 11];24(12):5629–41. Available from: http://doi.wiley.com/10.1111/gcb.14439
1.
Brener-Raffalli K, Clerissi C, Vidal-Dupiol J, Adjeroud M, Bonhomme F, Pratlong M, et al. Thermal regime and host clade, rather than geography, drive Symbiodinium and bacterial assemblages in the scleractinian coral Pocillopora damicornis sensu lato. Microbiome [Internet]. 2018 [cited 2020 Feb 18];6(1). Available from: https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-018-0423-6
1.
Zwerschke N, Rein H, Harrod C, Reddin C, Emmerson MC, Roberts D, et al. Competition between co‐occurring invasive and native consumers switches between habitats. Higham T, editor. Functional Ecology [Internet]. 2018 [cited 2020 Feb 17];32(12):2717–29. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2435.13211
1.
Pessarrodona A, Moore PJ, Sayer MDJ, Smale DA. Carbon assimilation and transfer through kelp forests in the NE Atlantic is diminished under a warmer ocean climate. Global Change Biology [Internet]. 2018 [cited 2018 Nov 26];24(9):4386–98. Available from: http://doi.wiley.com/10.1111/gcb.14303
1.
Chenuil A, Saucède T, Hemery LG, Eléaume M, Féral JP, Améziane N, et al. Understanding processes at the origin of species flocks with a focus on the marine Antarctic fauna: Understanding the origins of species flocks. Biological Reviews [Internet]. 2018 [cited 2020 Feb 17];93(1):481–504. Available from: http://doi.wiley.com/10.1111/brv.12354
1.
Brown NEM, Milazzo M, Rastrick SPS, Hall-Spencer JM, Therriault TW, Harley CDG. Natural acidification changes the timing and rate of succession, alters community structure, and increases homogeneity in marine biofouling communities. Global Change Biology [Internet]. 2018 [cited 2020 Feb 17];24(1):e112–27. Available from: http://doi.wiley.com/10.1111/gcb.13856
1.
Burgos E, Montefalcone M, Ferrari M, Paoli C, Vassallo P, Morri C, et al. Ecosystem functions and economic wealth: Trajectories of change in seagrass meadows. Journal of Cleaner Production [Internet]. 2017 [cited 2020 May 11];168:1108–19. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0959652617320358
1.
Cahill AE, De Jode A, Dubois S, Bouzaza Z, Aurelle D, Boissin E, et al. A multispecies approach reveals hot spots and cold spots of diversity and connectivity in invertebrate species with contrasting dispersal modes. Molecular Ecology [Internet]. 2017 [cited 2020 Feb 18];26(23):6563–77. Available from: http://doi.wiley.com/10.1111/mec.14389
1.
Robuchon M, Valero M, Thiébaut E, Le Gall L. Multi-scale drivers of community diversity and composition across tidal heights: an example on temperate seaweed communities. Randall Hughes A, editor. Journal of Ecology [Internet]. 2017 [cited 2020 Mar 17];105(6):1791–805. Available from: http://doi.wiley.com/10.1111/1365-2745.12781
1.
Ashton GV, Morley SA, Barnes DKA, Clark MS, Peck LS. Warming by 1°C Drives Species and Assemblage Level Responses in Antarctica’s Marine Shallows. Current Biology [Internet]. 2017 [cited 2018 Nov 26];27(17):2698-2705.e3. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0960982217309521
1.
Weber AAT, Abi-Rached L, Galtier N, Bernard A, Montoya-Burgos JI, Chenuil A. Positive selection on sperm ion channels in a brooding brittle star: consequence of life-history traits evolution. Molecular Ecology [Internet]. 2017 [cited 2020 Feb 28];26(14):3744–59. Available from: http://doi.wiley.com/10.1111/mec.14024
1.
Sunday JM, Fabricius KE, Kroeker KJ, Anderson KM, Brown NE, Barry JP, et al. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nature Climate Change [Internet]. 2017 [cited 2020 Feb 17];7(1):81–5. Available from: http://www.nature.com/articles/nclimate3161
1.
Arivalagan J, Yarra T, Marie B, Sleight VA, Duvernois-Berthet E, Clark MS, et al. Insights from the Shell Proteome: Biomineralization to Adaptation. Molecular Biology and Evolution [Internet]. 2017 [cited 2018 Nov 26];34(1):66–77. Available from: https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msw219